Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.

Identifieur interne : 002122 ( Main/Exploration ); précédent : 002121; suivant : 002123

Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.

Auteurs : Dejuan Euring ; Hua Bai ; Dennis Janz ; Andrea Polle

Source :

RBID : pubmed:25547614

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nitrogen is an important nutrient, often limiting plant productivity and yield. In poplars, woody crops used as feedstock for renewable resources and bioenergy, nitrogen fertilization accelerates growth of the young, expanding stem internodes. The underlying molecular mechanisms of nitrogen use for extension growth in poplars are not well understood. The aim of this study was to dissect the nitrogen-responsive transcriptional network in the elongation zone of Populus trichocarpa in relation to extension growth and cell wall properties.

RESULTS

Transcriptome analyses in the first two internodes of P. trichocarpa stems grown without or with nitrogen fertilization (5 mM NH4NO3) revealed 1037 more than 2-fold differentially expressed genes (DEGs). Co-expression analysis extracted a network containing about one-third of the DEGs with three main complexes of strongly clustered genes. These complexes represented three main processes that were responsive to N-driven growth: Complex 1 integrated growth processes and stress suggesting that genes with established functions in abiotic and biotic stress are also recruited to coordinate growth. Complex 2 was enriched in genes with decreased transcript abundance and functionally annotated as photosynthetic hub. Complex 3 was a hub for secondary cell wall formation connecting well-known transcription factors that control secondary cell walls with genes for the formation of cellulose, hemicelluloses, and lignin. Anatomical and biochemical analysis supported that N-driven growth resulted in early secondary cell wall formation in the elongation zone with thicker cell walls and increased lignin. These alterations contrasted the N influence on the secondary xylem, where thinner cell walls with lower lignin contents than in unfertilized trees were formed.

CONCLUSION

This study uncovered that nitrogen-responsive elongation growth of poplar internodes is linked with abiotic stress, suppression of photosynthetic genes and stimulation of genes for cell wall formation. Anatomical and biochemical analysis supported increased accumulation of cell walls and secondary metabolites in the elongation zone. The finding of a nitrogen-responsive cell wall hub may have wider implications for the improvement of tree nitrogen use efficiency and opens new perspectives on the enhancement of wood composition as a feedstock for biofuels.


DOI: 10.1186/s12870-014-0391-3
PubMed: 25547614
PubMed Central: PMC4302602


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.</title>
<author>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
</author>
<author>
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25547614</idno>
<idno type="pmid">25547614</idno>
<idno type="doi">10.1186/s12870-014-0391-3</idno>
<idno type="pmc">PMC4302602</idno>
<idno type="wicri:Area/Main/Corpus">001E58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E58</idno>
<idno type="wicri:Area/Main/Curation">001E58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E58</idno>
<idno type="wicri:Area/Main/Exploration">001E58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.</title>
<author>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
</author>
<author>
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Wall (drug effects)</term>
<term>Cell Wall (metabolism)</term>
<term>Fertilizers (analysis)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phenols (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Engrais (analyse)</term>
<term>Famille multigénique (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Paroi cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Phénols (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Fertilizers</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Engrais</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Wall</term>
<term>Photosynthesis</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Paroi cellulaire</term>
<term>Photosynthèse</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Lignin</term>
<term>Nitrogen</term>
<term>Phenols</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Phénols</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Multigene Family</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nitrogen is an important nutrient, often limiting plant productivity and yield. In poplars, woody crops used as feedstock for renewable resources and bioenergy, nitrogen fertilization accelerates growth of the young, expanding stem internodes. The underlying molecular mechanisms of nitrogen use for extension growth in poplars are not well understood. The aim of this study was to dissect the nitrogen-responsive transcriptional network in the elongation zone of Populus trichocarpa in relation to extension growth and cell wall properties.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Transcriptome analyses in the first two internodes of P. trichocarpa stems grown without or with nitrogen fertilization (5 mM NH4NO3) revealed 1037 more than 2-fold differentially expressed genes (DEGs). Co-expression analysis extracted a network containing about one-third of the DEGs with three main complexes of strongly clustered genes. These complexes represented three main processes that were responsive to N-driven growth: Complex 1 integrated growth processes and stress suggesting that genes with established functions in abiotic and biotic stress are also recruited to coordinate growth. Complex 2 was enriched in genes with decreased transcript abundance and functionally annotated as photosynthetic hub. Complex 3 was a hub for secondary cell wall formation connecting well-known transcription factors that control secondary cell walls with genes for the formation of cellulose, hemicelluloses, and lignin. Anatomical and biochemical analysis supported that N-driven growth resulted in early secondary cell wall formation in the elongation zone with thicker cell walls and increased lignin. These alterations contrasted the N influence on the secondary xylem, where thinner cell walls with lower lignin contents than in unfertilized trees were formed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This study uncovered that nitrogen-responsive elongation growth of poplar internodes is linked with abiotic stress, suppression of photosynthetic genes and stimulation of genes for cell wall formation. Anatomical and biochemical analysis supported increased accumulation of cell walls and secondary metabolites in the elongation zone. The finding of a nitrogen-responsive cell wall hub may have wider implications for the improvement of tree nitrogen use efficiency and opens new perspectives on the enhancement of wood composition as a feedstock for biofuels.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25547614</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.</ArticleTitle>
<Pagination>
<MedlinePgn>391</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-014-0391-3</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Nitrogen is an important nutrient, often limiting plant productivity and yield. In poplars, woody crops used as feedstock for renewable resources and bioenergy, nitrogen fertilization accelerates growth of the young, expanding stem internodes. The underlying molecular mechanisms of nitrogen use for extension growth in poplars are not well understood. The aim of this study was to dissect the nitrogen-responsive transcriptional network in the elongation zone of Populus trichocarpa in relation to extension growth and cell wall properties.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Transcriptome analyses in the first two internodes of P. trichocarpa stems grown without or with nitrogen fertilization (5 mM NH4NO3) revealed 1037 more than 2-fold differentially expressed genes (DEGs). Co-expression analysis extracted a network containing about one-third of the DEGs with three main complexes of strongly clustered genes. These complexes represented three main processes that were responsive to N-driven growth: Complex 1 integrated growth processes and stress suggesting that genes with established functions in abiotic and biotic stress are also recruited to coordinate growth. Complex 2 was enriched in genes with decreased transcript abundance and functionally annotated as photosynthetic hub. Complex 3 was a hub for secondary cell wall formation connecting well-known transcription factors that control secondary cell walls with genes for the formation of cellulose, hemicelluloses, and lignin. Anatomical and biochemical analysis supported that N-driven growth resulted in early secondary cell wall formation in the elongation zone with thicker cell walls and increased lignin. These alterations contrasted the N influence on the secondary xylem, where thinner cell walls with lower lignin contents than in unfertilized trees were formed.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study uncovered that nitrogen-responsive elongation growth of poplar internodes is linked with abiotic stress, suppression of photosynthetic genes and stimulation of genes for cell wall formation. Anatomical and biochemical analysis supported increased accumulation of cell walls and secondary metabolites in the elongation zone. The finding of a nitrogen-responsive cell wall hub may have wider implications for the improvement of tree nitrogen use efficiency and opens new perspectives on the enhancement of wood composition as a feedstock for biofuels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Euring</LastName>
<ForeName>Dejuan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janz</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="Y">Fertilizers</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25547614</ArticleId>
<ArticleId IdType="pii">s12870-014-0391-3</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-014-0391-3</ArticleId>
<ArticleId IdType="pmc">PMC4302602</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2001 Jul;52(360):1383-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 28;415(6875):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2002 Apr;89(4):147-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12061398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Feb;23(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12533308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 Dec;28(12):2483-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12564795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 May 1;116(Pt 9):1659-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2003 Jun;116(3):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Mar 9;14(5):354-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Sep;56(419):2465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16061508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1310-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Apr;60(6):929-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Dec;276(6):517-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Feb;12(2):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 May 1;21(9):1010-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17473168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Dec;10(6):564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17950657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Sep;28(9):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(1):45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(11):e3699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19002244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):878-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):649-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 18;138(6):1184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):242-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Aug;30(8):1016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Oct;30(10):1273-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3845-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Dec 19;10:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(12):R123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jun;233(6):1237-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1255-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22126133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Mar;5(2):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Feb;53(2):368-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22239166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Nov;32(11):1403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23076823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(1):11-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23162114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):1795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23400705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1011:51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jul;97(13):5669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 19;8(8):e72126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:607-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):520-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Aug;85(6):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24899403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Jul;72(4):533-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bai, Hua" sort="Bai, Hua" uniqKey="Bai H" first="Hua" last="Bai">Hua Bai</name>
<name sortKey="Euring, Dejuan" sort="Euring, Dejuan" uniqKey="Euring D" first="Dejuan" last="Euring">Dejuan Euring</name>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25547614
   |texte=   Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25547614" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020